Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ola F. Wendt

Inorganic Chemistry, Department of Chemistry, Lund University, Box 124, S-221 00 Lund, Sweden

Correspondence e-mail: ola.wendt@inorg.lu.se

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.054$
$w R$ factor $=0.165$
Data-to-parameter ratio $=35.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Chloro(methyl)($\boldsymbol{\eta}^{5}$-pentamethylcyclopentadienyl)(trimethylphosphine)rhodium(III)

The title compound, $\mathrm{RhCp} * \mathrm{Me}(\mathrm{Cl})\left(\mathrm{PMe}_{3}\right)$ or $\left[\mathrm{RhCl}\left(\mathrm{CH}_{3}\right)\right.$ $\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{P}\right)$, where $\mathrm{Cp} *$ is pentamethylcyclopentadienyl, has a pseudo-tetrahedral coordination geometry. The Cp* ligand is planar and η^{5}-coordinated. The molecular structure can be described as a so-called three-legged pianostool. The rhodium-methyl, rhodium-chlorine and rhodiumphosphorus distances are $2.255(4), 2.3764$ (18) and 2.2436 (13) Å, respectively.

Comment

The title compound, (I) (Fig. 1), was first prepared by Jones \& Feher (1984) and belongs to a group of complexes that have been used extensively in the activation of small molecules (Lefort et al., 1998; Arndtsen et al., 1995). However, there are no reported crystal structures of chloro-methyl complexes of this type.

(I)

The coordination geometry around rhodium is pseudotetrahedral and the $\mathrm{Cp} *$ ligand is planar and η^{5}-coordinated. This gives rise to a three-legged piano-stool where the angles around rhodium involving the monodentate ligands are

Figure 1
Numbering scheme with displacement ellipsoids (30% probability) for the title compound.

Received 3 October 2001
Accepted 9 October 2001
Online 13 October 2001
around 88°. The deviation from idealized tetrahedral angles is probably dictated by the bulky Cp* ligand. Selected bond lengths and angles are given in Table 1. The closest contact between complexes is 2.04 (1) \AA and is found between $\mathrm{H} 9 A$ and $\mathrm{H} 9 A(-x,-y, 1-z)$. This short distance is probably an artefact that arises from the fact that H atoms are placed only to minimize intramolecular interactions. The $\mathrm{C} 9 \ldots \mathrm{C} 9(-x,-y$, $1-z$) distance is 3.870 (6) \AA and rotation around the $\mathrm{Rh}-\mathrm{C} 9$ bond makes the $\mathrm{C}-\mathrm{H}$ distances much longer.

Experimental

$\mathrm{RhCp} * \mathrm{Me}_{2}\left(\mathrm{PMe}_{3}\right)$ was synthesized according to Jones \& Feher (1984) and recrystallization from petroleum ether afforded red crystals of the title compound as a by-product.

Crystal data

$\left[\mathrm{RhCl}_{2}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{10} \mathrm{H}_{15}\right)\left(\mathrm{C}_{3} \mathrm{H}_{9} \mathrm{P}\right)\right]$	Mo $K \alpha$ radiation
$M_{r}=364.69$	Cell parameters from 6294
Orthorhombic, $P b c a$	reflections
$a=8.9295(18) \AA$	$\theta=2.8-25.4^{\circ}$
$b=14.792(3) \AA$	$\mu=1.23 \mathrm{~mm}^{-1}$
$c=25.812(5) \AA$	$T=293(2) \mathrm{K}$
$V=3409.2(12) \AA^{3}$	Prism, red
$Z=8$	$0.15 \times 0.03 \times 0.03 \mathrm{~mm}$
$D_{x}=1.421 \mathrm{Mg} \mathrm{m}^{-3}$	

Data collection

Bruker SMART CCD
diffractometer
ω scans
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.789, T_{\text {max }}=0.943$
33212 measured reflections
5506 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.165$
$S=1.00$
5506 reflections
154 parameters

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

Rh1-C4	$2.179(4)$	$\mathrm{P} 1-\mathrm{C} 8$	$1.807(6)$
Rh1-C5	$2.225(4)$	$\mathrm{P} 1-\mathrm{C} 7$	$1.822(6)$
Rh1-C3	$2.225(5)$	$\mathrm{P} 1-\mathrm{C} 6$	$1.823(5)$
Rh1-C2	$2.228(5)$	$\mathrm{C} 1-\mathrm{C} 5$	$1.415(6)$
Rh1-C1	$2.230(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.453(8)$
Rh1-P1	$2.2436(13)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.344(8)$
Rh1-C9	$2.255(4)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.419(9)$
Rh1-Cl1	$2.3764(18)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.393(7)$
P1-Rh1-C9	$89.02(11)$	$\mathrm{C} 7-\mathrm{P} 1-\mathrm{Rh} 1$	$116.3(2)$
P1-Rh1-Cl1	$87.88(6)$	$\mathrm{C} 6-\mathrm{P} 1-\mathrm{Rh} 1$	$116.97(19)$
C9-Rh1-Cl1	$87.55(12)$	$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 2$	$105.1(4)$
$\mathrm{C} 8-\mathrm{P} 1-\mathrm{C} 7$	$103.3(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$109.3(5)$
C8-P1-C6	$103.2(3)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$109.0(5)$
C7-P1-C6	$102.7(3)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$107.4(5)$
C8-P1-Rh1	$112.6(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1$	$109.0(4)$

The highest residual electron density is located within $0.5 \AA$ of C 9 and Cl1.

Data collection: SMART (Bruker, 1995); cell refinement: SAINT (Bruker, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Financial assistance from the Swedish Natural Science Research Council and The Crafoord Foundation is gratefully acknowledged. The author thanks Professor Åke Oskarsson for valuable discussions.

References

Arndtsen, B. A., Bergman, R. G., Mobley, T. A. \& Peterson, T. H. (1995). Acc. Chem. Res. 28, 154-162.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (1995). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Jones, W. D. \& Feher, F. J. (1984). Inorg. Chem. 23, 2376-2388.
Lefort, L., Lachicotte, R. J. \& Jones, W. D. (1998). Organometallics, 17, 14201425.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

